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Preface

Jaan Kalda’s handouts are beloved by physics students both in for a quick challenge, to students preparing

for international Olympiads. The current celestial mechanics handout (written by Mihkel Kree, ver 0.7) is,

unfortunately for people not fluent in Estonian, fully in Estonian [2]. Here, we have attempted to translate the

entire handout.

Contact Us

Because none of the authors of this document actually know Estonian, we used a combination of Google

Translate and observing similarities between the handout and other English-language documents. As a result,

some of the translations here are likely wrong or a misinterpretation of the original text. If you do find any

mistakes, or know the source of a specific problem, then please contact us at hello@physoly.tech. The most

current and updated version of this document can be found on our website physoly.tech.

Please feel free to contact us at the same email if you are confused on a question. Chances are that many others

will have the same question as you.
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1 Introduction

In this handout we take a look at the basic properties of an ellipse and the important features of an ellipse in

relation to gravity. We derive all three of Kepler’s laws with some effort based on known conservation laws.

We’ll also take a look at some tricks in solving planetary motion problem using our main tools of (as expected)

conservation of energy and momentum. Among other things, we prove that the total energy of a planet does

not depend on the shape of its orbit, but only its semi-major axis. The solutions to the problems are located

in the last chapter.

2 Ellipses

An ellipse is essentially a stretched circle. For example, consider a circle of radius r = b and stretch it in the

x-axis by a coefficient of expansion k = a/b > 1. We now have an ellipse with semi-minor axis b and semi-major

axis a. The area of the ellipse is, of course, S = πab.

Figure 1: Stretching a circle, we get an ellipse

Traditionally, an ellipse is defined by two foci and a semi-major axis, where the sum of the distances of each

point on the ellipse to the foci is equal to twice the semi-major axis: r1 + r2 = 2a. Sometimes it is also

necessary to focus on the distance c to the center of the ellipse. In fact, the eccentricity of an ellipse is defined

as e = c/a < 1. It is easy to see that a2 = b2 + c2.

A tangent drawn at any point of an ellipse is at the same angle to the lines connecting that point with the two

foci of the ellipse. (This “reflection property” explains why in an elliptical space, a sound source located at one

focus is heard very clearly at the other focus). Since it is sometimes necessary to use the equations of an ellipse

in problems, we will present them here. If the center of an ellipse is at the origin, it is defined by the equations

y = b sinφ

x = a cosφ

1 =
(x
a

)2
+
(y
b

)2
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Figure 2: The figure above shows the semi-major and semi-minor axes of an ellipse as well as some of its

properties and the definition of the polar coordinates used.

The following is an equation of an ellipse in polar coordinates with respect to the foci:

r =
a(1− e2)

1− e cos2 θ
.

3 Gravitational Fields

The force between two point masses is known to be

F =
GMm

r2
. (1)

We define the gravitational potential energy of an object (negative) to be the work per unit mass that would

be needed to move an object from infinity to some location in space.

Ep = −GMm

r
. (2)

Additionally, the gravitational field strength is related to the potential energy by the formula F = −dE
dr

.

pr 1. Determine the orbital period of an object that orbits in a circular path of radius R around the

Earth if the radius of the Earth is RM .

One type of problem deals with the mass distribution within a planet. Consider a spherical object of radius

R and its gravitational field at radius r ≤ R. If the mass distribution is spherically symmetric, then then

gravitational field of points located at r ≤ x ≤ R from the center of the object cancel each other out. Note:

This is also known as the shell theorem. For for following problems, assume that all objects are of uniform

density.
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pr 2. Find the time it takes to “fall” through a straight hole passing through the center of the Earth.

Hint: The position dependence of acceleration should be similar to that of a harmonic oscillator a =

−ω2x. Compare this with the time it takes or orbit Earth at ground level. How would the result change

if the hole did not pass through the center of the Earth?

pr 3. Prove that the gravitation field is constant in a spherical cavity inside a planet.

4 Kepler’s Laws

We present Kepler’s Laws in order of simplicity.

Kepler’s Second Law. Prove that the angular momentum ~L = ~r × ~p (where the star is at the origin) does

not change over time and relate it to the rate at which the line joining a planet and a star sweeps out area.

Solution. If we consider the angular momentum with respect to an axis perpendicular to the plane and passing

through the star, the we notice that the momentum cannot change as the only force acting on the planet is

directed towards the reference axis. Therefore:

d~L

dt
= ~M = 0, ~L = const.

We can reach the same result algebraically using the chain rule:

d~L

dt
=
d~r

dt
× ~p+ ~r × d~p

dt
= ~v × ~p+ ~r × ~F = 0,

since velocity and momentum are directed in the same direction, as well as the radius vector and force. The

cross product of vectors in the same direction is known to be zero.

We then find the area covered by the radius vector in a small time interval ∆t. The area swept through is a

triangle with height equal to the radius and base equal to the distance travelled by the planet during this time:

∆S =
1

2
rv⊥∆t =

L

2m
∆t,

where we substituted in the expression for angular momentum. Clearly, the area of this region does not depends

on the radius of orbit, but solely on the time period. Therefore, the radius vector sweeps through equal areas

in equal times.

Kepler’s First Law. Show that the orbit of a planet is elliptical, knowing the equation of an ellipse in polar

coordinates is given by: r = A/(1 + e cos θ). Hint: First make sure that
d

dt
(~v × ~L) = GMm

d~er
dt

, where ~er is

the radial unit vector.

Solution. This solution is mathematically difficult, so it is fine to simply follow along the solution. Let’s start

from the hint by denoting the mass of the star M , the mass of the planet m, and the radial unit vector ~er:

d

dt
(~v × ~L) =

d~v

dt
× ~L+ ~v × d~L

dt
=
d~v

dt
× ~L = ~a× ~L =

1

m
~F × ~L = −GM

r2
~er × ~L.
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In the following equations, note that r denotes the modulus of the radius vector and ~r is the vector itself:

~r = r~er, ~v =
d(r~er)

dt
=
dr

dt
~er + r

d~re
dt
,

~L = ~r × ~p = m~r ×
(
dr

dt
~er + r

d~er
dt

)
= mr2

(
~er ×

d~er
dt

)
,

Since ~r and ~er are parallel, the vector product disappears. Next, we use the rule for converting the vector

products to scalar products ~a× (~b× ~c) = ~b(~a~c)− ~c(~a~b)

d

d
(~v × ~L) = −Gm

r2
~er × ~L = −GMm~er ×

(
~er ×

d~er
dt

)

= −GMm~er

(
~er
d~er
dt

)
+GMm

d~er
dt

(~er~er) = GMm
d~er
dt

as ~er and
d~er
dt

are perpendicular to teach other and the square of ~er is one. Before differentiation, we have the

equation

~v × ~L = GMm~er + ~C, (3)

where ~C is a constant vector. Equation (3) is also worth remembering, as we will return to it later in connection

to a problem. Finally, to complete our proof, we can see that

L2 = ~L (~r ×m~v) = m~r
(
~v × ~L

)
= mr (GMm+ C cos(θ)) ,

where we have used the formula ~a(~b× ~c) = ~b(~c× ~a) and where θ denotes the angle between the vectors ~r and
~C. Finding r from the last expression, we get that

r =
L2

GMm2

1 + C
GMm cos θ

.

From this, we have shown that a planet (of negligible mass compared to its star) orbiting a star moves along

an elliptical orbit, one of whose foci is at the star.

Kepler’s Third Law. Show that the orbital period of a planet around a star of mass M in an orbit with

semi-major axis a is given by

T 2 =
(2π)2a3

GM
. (4)

Additional problem: Show that in a binary star system the stars move in elliptical orbits one of whose foci (for

each orbit) is at the center of mass of the system and show that the orbital period of the system is given by

T 2 =
(2π)2 (a1 + a2)2

G (M1 +M2)

Solution. Let’s first look at how to relate speed and acceleration (or gravitational forces). Let the body move

in a circle for an infinitely short time so that the displacement in the horizontal direction (see figure) would be

x and h in the vertical direction.
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From the equality of boundary angles we get similar triangles

h

x
=

x

2r − h
≈ x

2r
, h =

x2

2r
.

Let this movement take place during the period ∆t. Denoting the horizontal velocity v and the vertical

acceleration F/m, we get:

x = v∆t, h =
F
m(∆t)2

2
=
v2(∆t)2

2r
,

F

m
=
v2

r
.

So we have found the acceleration in circular motion. Now move the object to the perigee of its elliptical

orbit (closest point to a focus). The corresponding displacements are denoted by x′ and h′ (see figure). If we

compress the ellipse in the direction of the semi-major axis by a coefficient k = a/b, we would get a circle with

radius r = b. Doing that and combining it with our earlier result, we can see that:

h′

k
=
x′2

2b
, h′ =

x′2a

2b2
,

F

m
=
v2a

b2
,

where we have switched to acceleration and speed. The distance of the perigee from the focus is a− c, hence

F =
GMm

(a− c)2
, v2 =

Fb2

ma
=

GMmb2

ma(a− c)2
=
GM(a2 − c2)

a(a− c)2
=
GM(a+ c)

a(a− c)
,

where we proceeded from the relation a2 = b2 + c2. To determine the orbital period, we use Kepler’s Second

law (i.e. the time-area equality):

T

S
=

∆t

∆S
, T = πab

∆t
(a−c)v∆t

2

=
2πab

(a− c)v
,

where the area of the ellipse is S = πab and the area of the smaller section was from an isosceles triangle with

base v∆t and height a− c. Since we already have an expression for v2, we can find that

T 2 =
(2π)2a2b2

(a− c)2v2
=

(2π)2a2b2a(a− c)
(a− c)2GM(a+ c

=
(2π)2a3b2

GM(a2 − c2)
=

(2π)2a3

GM
,

proving Kepler’s Third Law (the square of the period is proportional to the cube of the semi-major axis). Note

that the constant of proportionality is given by

T 2

a3
=

4π2

GM
.
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5 Energy

pr 4. Derive the expression for total energy (kinetic plus potential):

E = −GMm

2a
. (5)

If the total energy is negative, then the object is unable to escape the gravitational field of the star to the

point at infinity since infinitely far away, the potential energy is zero and the total energy would be equal to

the kinetic energy, which cannot be negative. Sometimes problems give an object enough speed to escape the

gravitational field, in which case the total energy would be positive.

6 Problems

pr 5. An object is thrown vertically from the ground and reaches a distance R = RM above the surface

of the Earth before returning. If RM is the radius of the earth, determine the time of flight of the object.

pr 6. An object is sent into orbit via a two-stage process. First, the object has a velocity v1 at the

ground, and at the apogee of its orbit its velocity is increased to v2 = v + ∆v so that the object is now

in a circular orbit at radius R. If the radius of the Earth is RM , determine v1 and ∆v.

pr 7. An object moving in a circular orbit with radius R is given extra radial velocity. How large must

this velocity be in order for the object to escape Earth’s orbit? The radius of the earth is RM . Hint:

What must be the total energy of the object to get it out of orbit?

pr 8. An explosion takes place near a star, causing many small objects to fly outwards with speed v.

The objects begin to move in elliptical orbits, with one of the foci at the star. Determine the locus (set

of possible positions) of the second focus.

pr 9. Let us consider the gravitational compression of an interstellar gas cloud. Assume that the gas

has density ρ = 10−15 kg/m3 and fills a spherical space. Assume that the temperature is so low that the

initial velocity of the gas particles is zero. How long does it take for the gas cloud to shrink?

pr 10. From a point at infinity, an object approaches a star and then moves off back to infinity. Drawing

the two asymptotes to the trajectory of the object, they meet at an angle φ < 90◦ and have minimum

distance b and b′ from the star. Determine the relationship between b and b′ and find an expression for

the angle φ. Hint: Statement 3 may be useful.
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6.1 More Problems

Both Estonian and international olympiads sometimes have problems related to celestial mechanics (abbevi-

ations: EFO - Estonian Physics Olympiads, ES - Estonian-Finnish Physics Olympiad, IPhO - International

Physics Olympiad):

• EFO 2001, Problem 8 - Binary Star System

• ES 2005, Problem 3 - Ballistic Rocket

• ES 2004, Problem 2 - Planets

• IPhO 2005, Problem 1 - An Ill Fated Satellite

• IPhO 2001, Problem 2 - (Another) Binary Star System

• IPhO 1999, Problem 3 - A Space Probe to Jupiter

• IPhO 1996, Problem 3 - Moon and Tides

Translation of EFO 2001 Problem 8: - Binary Star System

pr 11. The masses of two stars in a binary star system are M1 and M2. Their initial values are

M10 = 1.5M� and M20 = 3M� (where M� denotes the mass of the Sun) and the system rotates around

its center of mass with orbital period T0 = 10 years. Mass continually flows from the first star to the

second star at a rate of µ = 10−7 M�/yr. (a) Prove that during this process the quantity M1M2va stays

constant, where v is the relative velocity of the stars and a is the distance between them. (b) Prove that

the quantity v2a remains constant. (c) At what rate does the orbital period of the stars change? Note:

The angular momentum of the isolated system remains constant, i.e. M1v1a1 +M2v2a2 = const, where

a1, a2 are the distances from the stars to their center of mass and v1, v2 are their velocities.
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7 Solutions

sol 1. To move in a circular orbit, the acceleration must be provided by the gravitational force

a =
v2

R
, a =

GM

R2
, v =

√
GM

R

The orbital time period, or the time taken to go around a circle is

T =
2πR

v
= 2π

√
R3

GM

sol 2. We solve the problem in general, where the minimum distance from then tunnel to the center

of the Earth is b. Let the object be located at some distance x from the midpoint of the tunnel and a

distance r from the center of the Earth (see the figure below). By the shell theorem, the effective part

of the Earth acting upon the object lies within a sphere of radius r from the center of the Earth:

F = −GM
′m

r2
, where M ′ =

4

3
πr3ρ.

However, we are interested only in the component of the force acting along the tunnel:

F‖ = F cosα = F
x

r
= −GM

′mx

r3
= −G4

3
πρmx.

Expressing ρ as a function of M and R, we obtain:

ρ =
M

4
3πR

3
, a = −GM

R3
x.

This equation is simple harmonic motion and has solution

x = cos(ωt), a =
d2x

dt2
= −ω2 cos(ωt) = −ω2x, therefore

ω2 =
GM

R3
, T = 2π

√
R3

GM
.

9
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sol 3. We can imagine the cavity as a superposition of a large sphere of density ρ and a smaller sphere

of radius −ρ, where the smaller sphere is completely contained within the larger sphere. From here we

get two accelerations (see the figure below):

~a1 = −GM1
~r1

|r1|3
and ~a2 = −GM2

~r2

|r2|3
.

Note that the denominator is of degree three since the numerator is a vector.

M1 =
4

3
πr3

1ρ, M2 = −4

3
πr3

2ρ, which gives total acceleration

~a = ~a1 + ~a2 = G
4

3
πρ (−~r1 + ~r2) =

4

3
Gπρ~d.

As a result, the gravitational field is the same at every point in the cavity and is in the direction of the

line connecting the centers of the spheres.

sol 4. Since the total energy of the object in orbit does not change, we write energy expressions at the

apogee and perigee of the object’s orbit:

E =
mv2

1

2
− GMm

r1
, E =

mv2
2

2
− GMm

r2
.

We consider the conservation of angular momentum: r1v1 = r2v2. We multiply the first (energy) equation

by r2
1 and the second by r2

2 and subtract, noting that r1 = a− c and r2 = a+ c:

E
(
r2

1 − r2
2

)
= −GMm(r1 − r2),

E = −GMm
r1 − r2

r2
1 − r2

2

= −GMm

r1 + r2
= −GMm

2a
.

10
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sol 5. The flight path of the object is along an infinitely narrow ellipse with semi-major axis R/2 (one

focus is at the center of the earth and the other is at the tip of the trajectory of the object). The period

of orbit depends solely on the semi-major axis (by Kepler’s third law), which we found in Problem 1.

Furthermore, the area swept through by the radius vector is proportional to the time of flight. Here, the

radius vector covers an area consisting of half the area of an ellipse and an isosceles triangle (of base 2b

and height a):
τ

S′
=
T0

S0
, where S0 = πab and S′ =

1

2
πab+ ba.

So we have that

τ =
1
2π + 1

π
T0 =

1
2π + 1

π
· 2π

√
a3

GM
=
(π

2
+ 1
)√ R3

2GM
.

More generally, if the object were to reach a height R 6= RM above the surface of the Earth, we have

that a = (RM +R)/2 and

S′ = πab− arccos

(
a−RM

a

)
ab+

bRM
a

√
RM (2a−RM )

τ =
π − arccos

(
a−RM
a

)
+ RM

a2

√
RM (2a−RM )

π
T0

τ =

(
2π − 2 arccos

(
a−RM

a

)
ab+

2RM
a2

√
RM (2a−RM )

)√
a3

GM
, where a =

RM +R

2

sol 6. Initially, the object moves along an elliptical orbit with semi-major axis R+RM . Knowing the

total energy and the potential energy of the object we can get the initial kinetic energy:

E = − GMm

RM +R
, Ek = E − Ep = GMm

(
1

RM
− 1

RM +R

)
, v =

√
2GMR

RM (R+RM )
.

To find the increase in velocity, we determine the velocity at the apogee of the orbit:

va =

√
2GMRM
R(R+RM )

, v2 =

√
GM

R
, ∆v = v2 − va

∆v =

√
GM

R

(
1−

√
2RM

R+RM

)

sol 7. A body moving in a circular orbit has velocity perpendicular to the radius and potential energy:

v⊥ =

√
GM

R
and Ep = −GMm

R
.

The radial velocity component added must make total energy nonnegative:

m
(
v2
⊥ + v2

‖

)
2

≥ GMm

R
, and v‖ ≥

√
GM

R
.
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sol 8. For this problem, one only needs to know the properties of an ellipse and the fact that the

total energy, which is the same for all pieces, depends on the longer half-axis of the ellipse, which thus

becomes the same for all pieces (see the result from problem 4). Additionally, we know that the sum

of the distances to the foci from each point on the ellipse is equal to twice the semi-major axis. We see

that the total energy is given by

E =
1

2
mv2 − GMm

R
= −GMm

2a

where R is the distance from the star to the explosion and a is the semi-major axis of the resulting orbit.

Since this value is constant, we can find that

a =
GMR

2GM − v2R
.

We know that the sum of the distances to the foci is 2a; one of these distances is already known to be

R. Thus, the locus of the second foci of the ellipse is a circle (with center at the explosion) of radius

r = 2a−R =
2GMR

2GM − v2R
−R =

v2R2

2GM − v2R
.

sol 9. The force acting on each particle is due to the particles inside it (due to the shell theorem), the

mass of which does not change during the compression process. Thus, the particles move in an elliptical

trajectory, with the gravitational force depending on the initial distance from the center of the sphere.

A particle that starts from distance x has semi-major axis a = x/2 and a mass acting on it of:

M =
4

3
πx3ρ,

and so we take half of its period:

τ =
T0

2
=

1

2

√
(2π)2a3

GM
=

1

2

√
4π2x3

8G · 4
3πx

3ρ
=

1

4

√
3π

2Gρ
,

which does not depend on the starting point and gives an answer of 67, 000 years.

sol 10. First, we notice that the speed before and after passing the star at infinity must be the same.

The angular momentum of the object with respect to the axis of the star does not change (as the force

arm is zero); therefore, by symmetry and the conservation of angular momentum, we have that b = b′.

Also note that the momentum vector ~L = ~r × ~p is directed into the page. Let us now consider the

moments when the object is at infinity and proceed from equation 3:

~v × ~L = GMm~er + ~C

The value ~v× ~L is directed away from the star perpendicular to the asymptotic line and ~er is parallel to

the asymptotic line. These three vectors form a right triangle with ~C the same in both cases, as shown

in the diagram below.

12
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Next, we need to calculate the angle φ, but it is easier to first determine φ/2 from the right triangle:

tan
φ

2
=
GmM

vL
=
GM

v2b
, tanφ =

tan φ
2 + tan φ

2

1− tan2 φ
2

=
2GM
v2b

1−
(
GM
v2b

)2 ,
which gives us an answer of:

φ = arctan

(
2GMv2b

v4b2 −G2M2

)
.
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